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§1 Elliptic Curves over C

Let E be an elliptic curve over C. So E is isomorphic to C/Λ, where Λ is a lattice in C, via the
isomorphism

ψ : C/Λ→ E : z 7→ (℘(z), ℘′(z))

where ℘ is the Weierstraß ℘-function:

℘(z) =
1
z2

+
∑
ω∈Λ
ω 6=0

(
1

(z − ω)2
− 1
ω2

)
.

In fact we have a bijection

{lattices up to homothety} ←→ {elliptic curves over C up to isomorphism}.

Two lattices Λ1,Λ2 are homothetic if there exists k ∈ C× such that Λ1 = kΛ2. In particular every
lattice is homothetic to one of the form Λτ where Λτ = Zτ + Z with τ ∈ H.

We are going to study the endomorphism ring End(E) of E. Now, Z ↪→ End(E) because for
each n ∈ Z the map P 7→ nP is an endomorphism.

Example. E : y2 = 4x3 − 4x over C. The corresponding lattice is Λ = Zω+ Ziω for some ω ∈ R.
This has extra symmetry, e.g. rotation π/2 clockwise. This can be expressed as Λ = iΛ. We can
see that

℘(iz) =
1

(iz)2
+
∑
ω 6=0

(
1

(iz − ω)2
− 1
ω2

)

=
1

(iz)2
+
∑
iω 6=0

(
1

(iz − iω)2
− 1

(iω)2

)
= −℘(z).

And ℘′(iz) = i℘′(z). So on E we consider i to be the endomorphism i(x, y) = (−x, iy). Note that

i2(x, y) = i(−x, iy)

= (x,−y)

= (−1)(x, y).

So i ∈ End(E) and hence Z[i] ⊂ End(E).

When End(E) is strictly larger than Z then we say E has complex multiplication (CM). Most
elliptic curves over C do not have CM.

Theorem. Let E be an elliptic curve over C corresponding to the lattice Λ. Then

End(E) ∼= {β ∈ C : βΛ ⊆ Λ}.
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This theorem places quite severe restrictions on what End(E) can be. We’ll prove that either
End(E) = Z or End(E) is an order in an imaginary quadratic field (IQF).

Recap. Let d > 0 be square-free, then K = Q(
√
−d) is an imaginary quadratic field. Its ring of

integers OK is K ∩ O, where O is the set of all algebraic integers in C. We have

OK =
{

Z[
√
−d] if d ≡ 1, 2 (mod 4)

Z[(1 +
√
−d)/2] if d ≡ 3 (mod 4).

An order in K is a subring R of OK with Z ⊂ R ⊂ OK . R has the form R = Z + Zfδ where
δ =
√
−d or (1 +

√
−d)/2 and f ∈ Z is called the conductor, it is the index of R in OK .

The discriminant of R is

DR =
{
−f2d if d ≡ 3 (mod 4)
−4f2d if d ≡ 1, 2 (mod 4).

Theorem. Let E be an elliptic curve over C. Then End(E) is isomorphic to either Z or an order
in an IQF.

Proof. Let Λ = Zω1 + Zω2 be the associated lattice to E. Let

R = {β ∈ C : βΛ ⊂ Λ} ∼= End(E).

R is a ring.

Suppose β ∈ R, then there exist j, k,m, n ∈ Z such that

βω1 = jω1 + kω2

βω2 = mω1 + nω2.

So (
β − j −k
−m β − n

)(
ω1

ω2

)
=
(

0
0

)
,

and so
(β − j)(β − n)− km = 0

whence
β2 − (j + n)β − km = 0.

So β is an algebraic integer in a quadratic field. If β ∈ R then the linear independence of ω1, ω2,
and

(β − j)ω1 − kω2 = 0
implies β = j ∈ Z. So R∩R = Z. Suppose R 6= Z, and let β ∈ R \Z, so in particular β 6∈ R hence
β is an algebraic integer in an IQF, say K = Q(

√
−d). Suppose β′ is another non-real element of

R. Then β′ ∈ K ′ = Q(
√
−d′). But β + β′ must lie in an IQF, whence K = K ′. So R ⊂ K and all

elements are algebraic integers. So R ⊂ OK and R is a ring, hence an order in an IQF. �

§2 Elliptic curves over Fq

Let E be an elliptic curve over Fq. An elliptic curve over a finite field always has CM. This
is easily seen in most cases, because the Frobenius endomorphism φ : E → E : (x, y) 7→ (xq, yq)
usually is not “in” Z. φ satisfies the quadratic equation

X2 − aX + q = 0

where |a| 6 2
√
q. When a < 2

√
q the equation only has non-real solutions, so φ 6∈ Z.



3

Theorem. Let E be an elliptic curve over a finite field of characteristic p.

(1) If E is ordinary (i.e. card(E[p]) = p) then End(E) is an order in an IQF.
(2) If E is supersingular (i.e. card(E[p]) = 1) then End(E) is a maximal order in a definite

quaternion algebra that is ramified at p and ∞ and splits at the other primes.
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