Algebraic Geometry Lecture 26 - Complex Multiplication of Elliptic Curves

Andrew Potter

§1 Elliptic Curves over \mathbb{C}

Let E be an elliptic curve over \mathbb{C}. So E is isomorphic to \mathbb{C} / Λ, where Λ is a lattice in \mathbb{C}, via the isomorphism

$$
\psi: \mathbb{C} / \Lambda \rightarrow E: z \mapsto\left(\wp(z), \wp^{\prime}(z)\right)
$$

where \wp is the Weierstra $ß \wp$-function:

$$
\wp(z)=\frac{1}{z^{2}}+\sum_{\substack{\omega \in \Lambda \\ \omega \neq 0}}\left(\frac{1}{(z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) .
$$

In fact we have a bijection
$\{$ lattices up to homothety $\} \longleftrightarrow\{$ elliptic curves over \mathbb{C} up to isomorphism $\}$.
Two lattices Λ_{1}, Λ_{2} are homothetic if there exists $k \in \mathbb{C}^{\times}$such that $\Lambda_{1}=k \Lambda_{2}$. In particular every lattice is homothetic to one of the form Λ_{τ} where $\Lambda_{\tau}=\mathbb{Z} \tau+\mathbb{Z}$ with $\tau \in \mathbb{H}$.

We are going to study the endomorphism ring $\operatorname{End}(E)$ of E. Now, $\mathbb{Z} \hookrightarrow \operatorname{End}(E)$ because for each $n \in \mathbb{Z}$ the map $P \mapsto n P$ is an endomorphism.

Example. $E: y^{2}=4 x^{3}-4 x$ over \mathbb{C}. The corresponding lattice is $\Lambda=\mathbb{Z} \omega+\mathbb{Z} i \omega$ for some $\omega \in \mathbb{R}$. This has extra symmetry, e.g. rotation $\pi / 2$ clockwise. This can be expressed as $\Lambda=i \Lambda$. We can see that

$$
\begin{aligned}
\wp(i z) & =\frac{1}{(i z)^{2}}+\sum_{\omega \neq 0}\left(\frac{1}{(i z-\omega)^{2}}-\frac{1}{\omega^{2}}\right) \\
& =\frac{1}{(i z)^{2}}+\sum_{i \omega \neq 0}\left(\frac{1}{(i z-i \omega)^{2}}-\frac{1}{(i \omega)^{2}}\right) \\
& =-\wp(z) .
\end{aligned}
$$

And $\wp^{\prime}(i z)=i \wp^{\prime}(z)$. So on E we consider i to be the endomorphism $i(x, y)=(-x, i y)$. Note that

$$
\begin{aligned}
i^{2}(x, y) & =i(-x, i y) \\
& =(x,-y) \\
& =(-1)(x, y)
\end{aligned}
$$

So $i \in \operatorname{End}(E)$ and hence $\mathbb{Z}[i] \subset \operatorname{End}(E)$.

When $\operatorname{End}(E)$ is strictly larger than \mathbb{Z} then we say E has complex multiplication (CM). Most elliptic curves over \mathbb{C} do not have CM.

Theorem. Let E be an elliptic curve over \mathbb{C} corresponding to the lattice Λ. Then

$$
\operatorname{End}(E) \cong\{\beta \in \mathbb{C}: \beta \Lambda \subseteq \Lambda\}
$$

This theorem places quite severe restrictions on what $\operatorname{End}(E)$ can be. We'll prove that either $\operatorname{End}(E)=\mathbb{Z}$ or $\operatorname{End}(E)$ is an order in an imaginary quadratic field (IQF).

Recap. Let $d>0$ be square-free, then $K=\mathbb{Q}(\sqrt{-d})$ is an imaginary quadratic field. Its ring of integers \mathcal{O}_{K} is $K \cap \mathcal{O}$, where \mathcal{O} is the set of all algebraic integers in \mathbb{C}. We have

$$
\mathcal{O}_{K}= \begin{cases}\mathbb{Z}[\sqrt{-d}] & \text { if } d \equiv 1,2 \quad(\bmod 4) \\ \mathbb{Z}[(1+\sqrt{-d}) / 2] & \text { if } d \equiv 3 \quad(\bmod 4)\end{cases}
$$

An order in K is a subring R of \mathcal{O}_{K} with $\mathbb{Z} \subset R \subset \mathcal{O}_{K}$. R has the form $R=\mathbb{Z}+\mathbb{Z} f \delta$ where $\delta=\sqrt{-d}$ or $(1+\sqrt{-d}) / 2$ and $f \in \mathbb{Z}$ is called the conductor, it is the index of R in \mathcal{O}_{K}.

The discriminant of R is

$$
D_{R}= \begin{cases}-f^{2} d & \text { if } d \equiv 3 \quad(\bmod 4) \\ -4 f^{2} d & \text { if } d \equiv 1,2 \quad(\bmod 4)\end{cases}
$$

Theorem. Let E be an elliptic curve over \mathbb{C}. Then $\operatorname{End}(E)$ is isomorphic to either \mathbb{Z} or an order in an IQF.

Proof. Let $\Lambda=\mathbb{Z} \omega_{1}+\mathbb{Z} \omega_{2}$ be the associated lattice to E. Let

$$
R=\{\beta \in \mathbb{C}: \beta \Lambda \subset \Lambda\} \cong \operatorname{End}(E)
$$

R is a ring.
Suppose $\beta \in R$, then there exist $j, k, m, n \in \mathbb{Z}$ such that

$$
\begin{aligned}
& \beta \omega_{1}=j \omega_{1}+k \omega_{2} \\
& \beta \omega_{2}=m \omega_{1}+n \omega_{2} .
\end{aligned}
$$

So

$$
\left(\begin{array}{cc}
\beta-j & -k \\
-m & \beta-n
\end{array}\right)\binom{\omega_{1}}{\omega_{2}}=\binom{0}{0}
$$

and so

$$
(\beta-j)(\beta-n)-k m=0
$$

whence

$$
\beta^{2}-(j+n) \beta-k m=0
$$

So β is an algebraic integer in a quadratic field. If $\beta \in \mathbb{R}$ then the linear independence of ω_{1}, ω_{2}, and

$$
(\beta-j) \omega_{1}-k \omega_{2}=0
$$

implies $\beta=j \in \mathbb{Z}$. So $R \cap \mathbb{R}=\mathbb{Z}$. Suppose $R \neq \mathbb{Z}$, and let $\beta \in R \backslash \mathbb{Z}$, so in particular $\beta \notin \mathbb{R}$ hence β is an algebraic integer in an IQF, say $K=\mathbb{Q}(\sqrt{-d})$. Suppose β^{\prime} is another non-real element of R. Then $\beta^{\prime} \in K^{\prime}=\mathbb{Q}\left(\sqrt{-d^{\prime}}\right)$. But $\beta+\beta^{\prime}$ must lie in an IQF, whence $K=K^{\prime}$. So $R \subset K$ and all elements are algebraic integers. So $R \subset \mathcal{O}_{K}$ and R is a ring, hence an order in an IQF.

$\S 2$ Elliptic curves over \mathbb{F}_{q}

Let E be an elliptic curve over \mathbb{F}_{q}. An elliptic curve over a finite field always has CM. This is easily seen in most cases, because the Frobenius endomorphism $\phi: E \rightarrow E:(x, y) \mapsto\left(x^{q}, y^{q}\right)$ usually is not "in" \mathbb{Z}. ϕ satisfies the quadratic equation

$$
X^{2}-a X+q=0
$$

where $|a| \leqslant 2 \sqrt{q}$. When $a<2 \sqrt{q}$ the equation only has non-real solutions, so $\phi \notin \mathbb{Z}$.

Theorem. Let E be an elliptic curve over a finite field of characteristic p.
(1) If E is ordinary (i.e. $\operatorname{card}(E[p])=p$) then $\operatorname{End}(E)$ is an order in an IQF.
(2) If E is supersingular (i.e. $\operatorname{card}(E[p])=1$) then $\operatorname{End}(E)$ is a maximal order in a definite quaternion algebra that is ramified at p and ∞ and splits at the other primes.

